

Webinar on the Certification of Co-processing under ISCC EU

04 June 2025 Patrick Ober, Julia Nevares, Aaro Bosco

Your Speakers

PatrickJuliaAaroOberNevaresBosco

Webinar Agenda

Introduction: ISCC and organizational aspect on co-processing

What is co-processing?

Delegated regulation on co-processing

Methodologies to determine bio-content of co-processed fuel

GHG methodology for co-processed fuel

Summary

Introduction: ISCC and organizational aspect on coprocessing

ISCC certification ensures sustainability and GHG emissions reductions along global supply chains

ISCC certification ensures

Sustainability in feedstock production

Traceability of sustainable materials through the supply chain

Verified reduction of GHG emissions

ISCC offers three certification systems, application depending on the market

To demonstrate compliance with the EU's sustainability criteria for biofuels, bioliquids and biomass fuels set out in the RED

Carbon Certification

- Australia)
- Industrial applications
- Food and feed markets

6 © ISCC System GmbH: For personal use only. Reproduction and distribution is prohibited.

for CORSIA eligible fuels

In the EU, Delegated Regulation (EU) 2023/1640 describes how biofuels produced through co-processing should be quantified

ISCC

- Delegated Regulation (EU) 2023/1640 sets out rules as to how to calculate the bio-content of products from co-processing to be sold on European market
- ISCC 203-01 guidance on coprocessing translates the requirements of Delegated Regulation into practical certification procedures
- ISCC received positive technical assessment by the EC for complying with this legislation via the ISCC Guidance document → compliance needs to be in ensured

ISCC 203-01 GUIDANCE FOR THE CERTIFICATION OF CO-PROCESSING

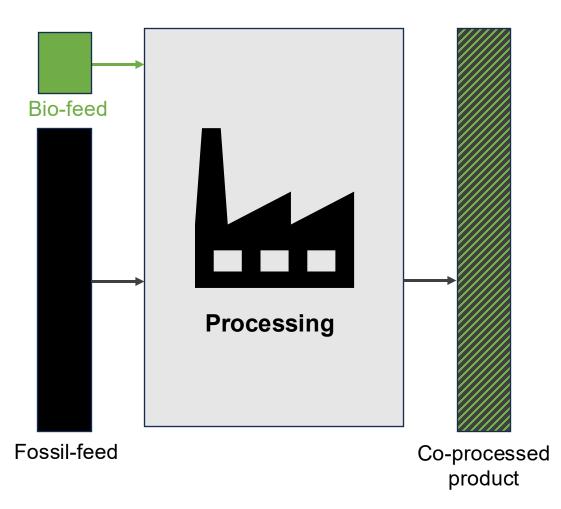
Version 2.0

ISCC Guidance Documents and Training on Co-processing

- This guidance documents covers definitions, methodologies on ¹⁴C testing and GHG calculation in co-processing set-ups
- Additionally, a Q&A document is in preparation
- ISCC has planned a training on co-processing
 → first training on September 25th 2025
 → next training early 2026
- From May 2026 onwards it will be mandatory for auditors certifying co-processing setups to have attended a training and passed the auditor test

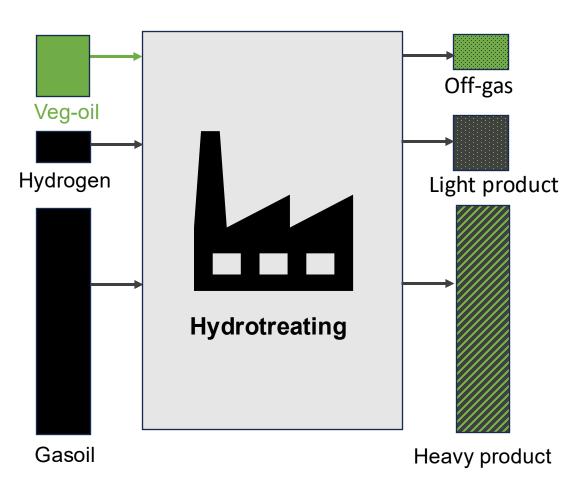
ISCC 203-01 GUIDANCE FOR THE CERTIFICATION OF CO-PROCESSING

Version 2.0


Approach for first audits against the new guidance

- The new guidance has been **applicable since April 3**rd
- If the System User faces challenges in proving compliance, they may collaborate closely with their CB and provide a pathway to the auditor on how to reach compliance
- Once all relevant measurements and documentation is in place, this must be approved by the auditor and the PoS with the conversion and GHG values can be issued
- Similarly to when a SU wants to use a new feedstock
- This approach avoids pausing or losing the certificate. However, sales are only possible after the approval and a potential extension of the certificate annex

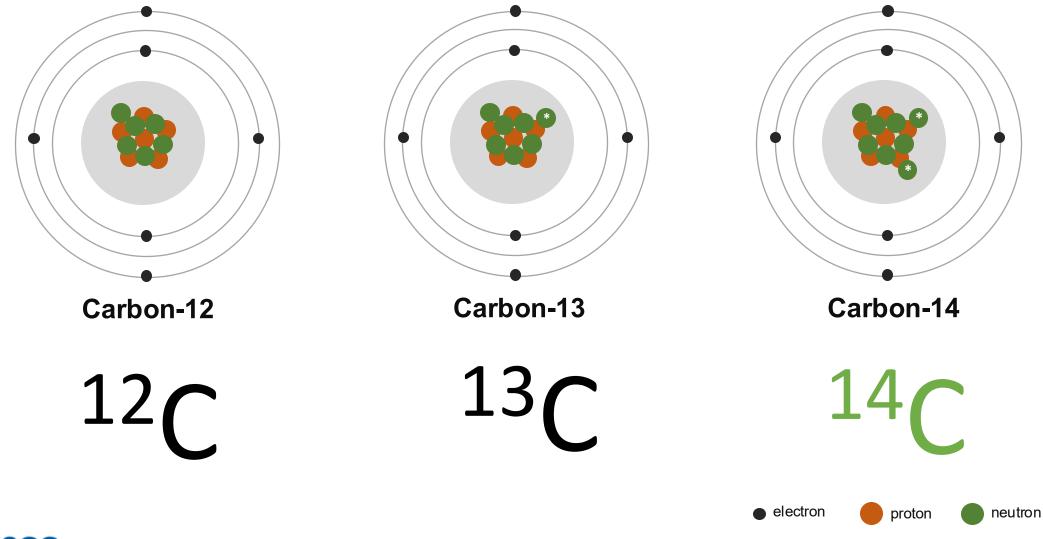
What is co-processing?



Co-processing per Commission Delegated Regulation (EU) 2023/1640 refers to "an industrial operation where biomass and fossil feedstocks are physically mixed and processed together"

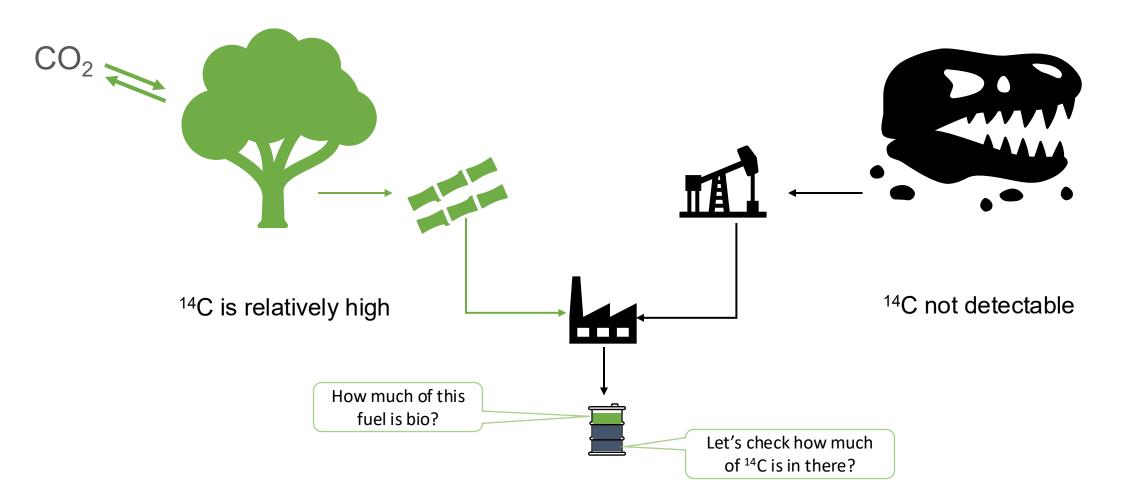
Hydrotreatment of vegetable oil and gasoil is an example of coprocessing

In the EU, Delegated Regulation (EU) 2023/1640 describes how biofuels produced through co-processing should be quantified


& Carbon Certification

- Delegated Regulation (EU) 2023/1640 sets out rules as to how to calculate the bio-content of products from co-processing to be sold on european market
- Highlights of the Delegated Regulation (EU) 2023/1640:
 - Usage of ¹⁴C testing as a harmonized testing method to determine the bio-content of co-processed fuel sold in the EU market
 - Methodologies to determine bio-content of a coprocessed fuel
 - Testing and documentation requirements
- ISCC 203-01 guidance on coprocessing translates the requirements of Delegated Regulation into practical certification procedures

The Delegated Regulation stipulates the use of radiocarbon (¹⁴C) testing as a standard approach to ensure the carbonbased bio-content of outputs



Carbon has three isotopes, but only fresh biomass and relatively young organic materials contain detectable amounts of ¹⁴C

Amount of ¹⁴C can be used to determine the amount of carbon-based biocontent of co-processed fuel

The DR allows economic operators to perform ¹⁴C testing using either AMS or LSC method

	Accelerator Mass Spectrometry (AMS) method	Liquid Scintillation Counting (LSC) method
Concept	Counts atoms of ¹⁴ C	Counts beta decay of ¹⁴C
Cost	High	Low to moderate
Scope of testing method	AMS can handle solid, liquid and gaseous samples	Nature of the sample might affect the output signal due to chemical/light quenching
Sensitivity	Very high AMS can detect as low as one ¹⁴ C in 10 ¹⁵ C atoms	Moderate LSC is sutiable if the expected bio-content is atleast 1% by volume

Economic operators can use other methods that are calibrated against ¹⁴C testing to determine bio-content

Commission Delegated Regulation (EU) 2023/1640,

Art.1(1)

• Economic operators co-processing biomass may develop and use a company-specific or process-specific testing method to determine the carbon-based share of bio-content that is adapted to their particular factory design and feedstock mix.

Art.1(5)

 When economic operators report co-processing results using a main testing method other than one based on radiocarbon (¹⁴C) testing, they shall use radiocarbon (¹⁴C) testing of the outputs as a regular way of verifying the correctness of the performance of their system and the results of the main testing method used. Verification through radiocarbon (¹⁴C) testing shall be required for all outputs claiming a carbon-based bio-content.

ISCC 203-1 guidance groups all the bio-content testing methods into two categories

Direct Testing Method

• ¹⁴C testing of the output

Indirect Testing Method

- Mass balance
- Energy balance
- Yield method
- Other company-specific methods

Apart from the ¹⁴C testing, system users can use other methods calibrated against ¹⁴C testing (indirect ¹⁴C testing method)

In a direct ¹⁴C testing method,

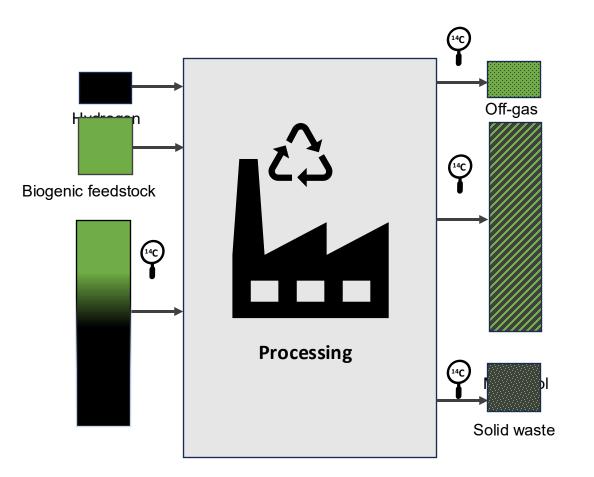
- samples of co-processed fuels are sent to a laboratory for ¹⁴C testing
- bio-content is determined from ¹⁴C testing results
- ¹⁴C testing shall be based on AMS or LSC

In an indirect ¹⁴C testing method

- model based on process data predicts the bio content
- bio-content values predicted by the model are calibrated against direct
 ¹⁴C testing results
- Indirect ¹⁴C methods shall be based on mass-balance, energy-balance or yield methods

Process technology scope of DR 2023/1640

The Delegated Regulation 2023/1640 on co-processing has broad applicability with a few notable exceptions.



Process technology scope of DR 2023/1640

There are some additional/specific requirements around co-processing set-ups that need to be addressed

Specific ¹⁴C testing requirements

Mixed Feedstock

- For installations co-processing waste-based inputs,¹⁴C testing of the biomass input is needed
- ¹⁴C testing shall also account for any biogenic losses (e.g. CO, CO₂, wastewater, solid residues)
- Economic Operator (EO) shall apply the same testing method for all interconnected installations that are considered inside the co-processing boundary
- Deviation in bio-content values determined by indirect method and ¹⁴C testing shall not be more than 3% (for the 1st year of co-processing) and 1% (from the 2nd year of co-processing)

The frequency of ¹⁴C testing depends on the robustness of the biocontent testing methodology

Is there a method* that can map changes in the bio-content due to varying operating conditions?

¹⁴C testing at least once every 4 months

Yes

¹⁴C testing method every time there is a change > 5 % compared to the baseline conditions**

No

*method shall be based on real time plant data of the co-processing unit

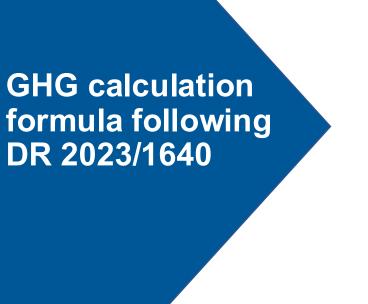
**baseline conditions: feedstock composition, process temperature, pressure, amount of hydrogen and catalyst etc.,

Documentation requirements for co-processed fuel

- Detailed description of the process and bio-content testing method
- The amounts of biomass entering and product leaving the co-processing unit
- An **overall mass balance system** in parallel to the main testing method to check and compare results on bio-share
- CHN analysis, water and solids content of the feedstocks and product
- Co-processed fuel samples should be kept for at least two years
- EOs provide full access to CBs on all documentation on co-processed fuel
- Record of the testing method used

GHG method

$$E = e_{ec} + e_l + e_p + e_{td} + e_u - e_{sca} - e_{ccs} - e_{ccr}$$


Where:

- E Total GHG emissions from supply and use of the fuel (in g CO_{2eq}/MJ)
- **e**_{ec} GHG emissions from the extraction or cultivation of raw materials
- e₁ Annualized (over 20 years) GHG emissions from carbon stock change due to land use change
- e_p GHG emissions from processing
- etd GHG emissions from transport and distribution
- **e**_u GHG emissions from the fuel in use
- **e**_{sca}- GHG emissions savings from soil carbon accumulation via improved agricultural management
- **e**_{ccs}- GHG emissions savings from carbon capture and geological storage
- **e**_{ccr}- GHG emissions savings from carbon capture and replacement

RED II Annex V provides the GHG calculation formula

$$E = e_{biogenic feed in} + e_p + e_{td} + e_u$$

Where:

- E
- **e**biogenic feed in

ep

e_{td}

e₁₁

- emissions of a specific co-processed fuel, in g CO₂e/MJ
- upstream emissions from the biogenic feedstock, calculated according to the RED framework
- emissions from processing of the whole refinery, proportionally distributed among bio and non-biogenic feedstock, plus all additional emissions required for the biogenic feedstock, based on the benchmark
- emissions from transport and distribution related to the coprocessed biofuels
- emissions from use of the fuel, where disaggregated default values from RED Annex V can also be used

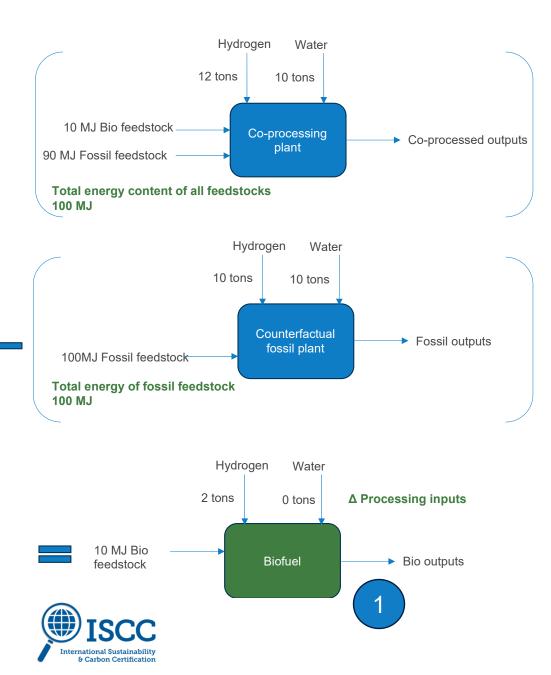
$$E = e_{biogenic feed in} + e_p + e_{td} + e_u$$

"What" and "how" it needs to be calculated?

ebiogenic feed in

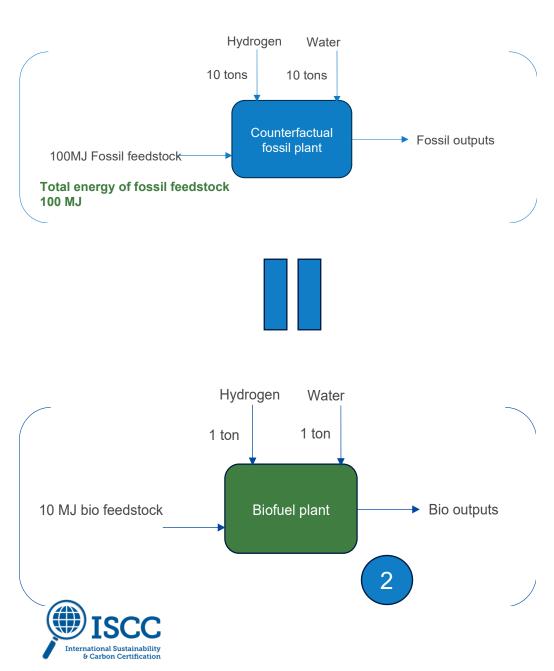
- ep
- **e**_{td}
- **e**_u

- This the e_{ec} of your agricultural or waste feedstock.
- A three step procedure is implemented following the _ guidance document
- This includes the upstream and downstream transport and distribution emissions of the produced bio-fuel.
- emissions from use of the fuel, where disaggregated default values from RED Annex V can also be used


$$E = e_{biogenic feed in} + e_p + e_{td} + e_u$$

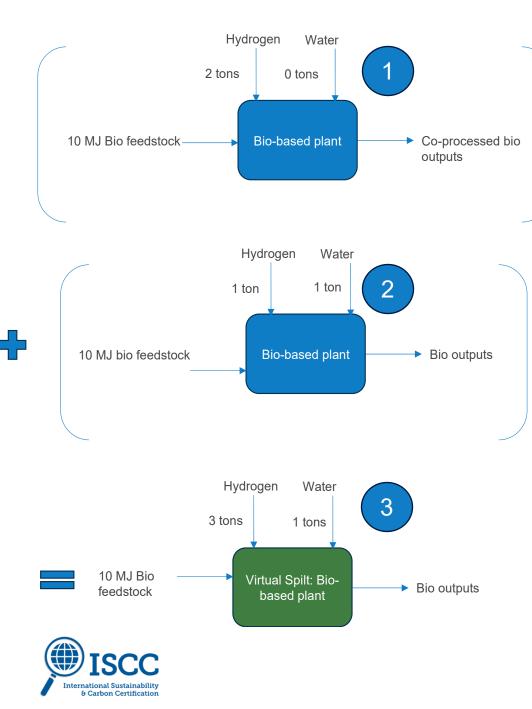
A three-step process is implemented here:

Step 1 : Determination of excess (Δ) processing inputs consumed by biomass- based feedstock
 Step 2: Proportional attribution of the remaining processing inputs
 Step 3: Virtual split: bio-based plant


How is e_p calculated?

How is e_p is calculated following the guidance document?

Step 1: Determination of excess (Δ) processing inputs consumed by biomass-based feedstock


- A counterfactual plant should be modelled based on the existing co-processing facility, ensuring equivalent processing capacity. The processing inputs should align with those of a conventional fossil-based plant.
- The variance in processing inputs and waste generation must be systematically evaluated, considering factors such as hydrogen consumption, water usage, and wastewater generation.
- This comparative analysis will determine the additional processing inputs (Δ) required specifically for biomassbased feedstock utilization.

How is e_p is calculated following the guidance document?

Step 2: Proportional attribution of the remaining processing inputs

- The remaining processing inputs from the counterfactual fossil plant are proportionally allocated to the biofuel production process.
- **Example:** Given a bio-feedstock energy input of **10 MJ**, the corresponding processing inputs are determined as follows:
 - If 10 MJ of hydrogen is required to process 100 MJ of fossil feedstock,
 - Then **1 MJ** of hydrogen is proportionally allocated for processing **10 MJ** of bio-feedstock.

How is e_p is calculated following the guidance document?

Step 3: Virtual split: bio-based plant

- The summation of **Step 1** and **Step 2** leads to the formation of a **virtually split bio-based plant**.
- In **Step 3**, processing emissions for the bio-based plant are calculated using the allocated processing inputs.

Example:

3 tons of $H_2 \times$ Emission Factor of Hydrogen

 The total processing emissions are exclusively allocated to the bio-based outputs, ensuring accurate attribution within the lifecycle assessment. Wrap up

Wrap up and reference to training

- Determination of the biogenic share using **14C testing** or a method calibrated against must be in place
- A virtual separation of the biogenic and fossil stream must be considered for GHG calculations
- Compliance with the new version of the ISCC guidance document on coprocessing is required
- A training on co-processing will be provided in September
 - → As of May 2026 it will be mandatory for auditors to have attended a training and passed the auditor test

THANK YOU

ISCC System GmbH

Hohenzollernring 72, 50672 Köln, Germany Amtsgericht Köln HRB 68185

www.iscc-system.org

